AgentSkillsCN

analyze-silver-miner-metal-ratio

以「銀礦股價格 ÷ 白銀價格」的相對比率衡量礦業股板塊相對於金屬本體的估值區間(偏貴/偏便宜),並用歷史分位數與類比區間推導「底部/頂部」訊號與情境推演。

中文原作
SKILL.md
--- frontmatter
name: analyze-silver-miner-metal-ratio
description: 以「銀礦股價格 ÷ 白銀價格」的相對比率衡量礦業股板塊相對於金屬本體的估值區間(偏貴/偏便宜),並用歷史分位數與類比區間推導「底部/頂部」訊號與情境推演。

<essential_principles>

<principle name="ratio_definition"> **比率定義與意義**

礦業股/金屬比率(Miner-to-Metal Ratio):

code
ratio_t = miner_price_t / metal_price_t

其中:

  • miner_price:銀礦股代表(ETF 如 SIL/SILJ,或自建礦業股指數)
  • metal_price:白銀價格(期貨 SI=F、現貨 XAGUSD、ETF SLV)

此比率衡量「礦業股相對於金屬本體」的估值水位:

  • 比率高:礦業股相對白銀偏貴(可能過度樂觀、槓桿溢價高)
  • 比率低:礦業股相對白銀偏便宜(可能被低估、或反映成本/股權稀釋風險) </principle>
<principle name="quantile_interpretation"> **分位數解讀邏輯**

使用歷史分位數(Percentile Rank)判斷當前比率位置:

分位數區間標籤直覺
≤ 20%bottom (底部)礦業股相對白銀歷史上很便宜
20-40%low (偏低)礦業股相對估值偏低
40-60%neutral (中性)歷史中位區間
60-80%high (偏高)礦業股相對估值偏高
≥ 80%top (頂部)礦業股相對白銀歷史上很貴

底部區間不等於白銀必漲:可能是礦業股因成本/稀釋被合理定價。 </principle>

<principle name="divergence_signal"> **背離訊號的意義**

當出現「比率低 + 白銀高」的組合:

  • 比率處於底部區:礦業股相對白銀偏便宜
  • 白銀處於高位:金屬價格已在歷史高檔

此「背離」意味著:

  1. 礦業股可能有追趕空間(均值回歸邏輯)
  2. 或礦業股正確反映了結構性問題(成本、稀釋、地緣風險)

需結合基本面交叉驗證,而非盲目視為買入訊號。 </principle>

<principle name="scenario_math"> **情境推演計算**

目標:若比率要回到歷史頂部(或中位),需要什麼條件?

假設當前比率 = 1.14,目標比率(頂部門檻)= 2.45:

情境 A:白銀不變,礦業股需漲多少?

code
miner_multiplier = target_ratio / current_ratio
                 = 2.45 / 1.14 = 2.15x (需漲 115%)

情境 B:礦業股不變,白銀需跌多少?

code
metal_multiplier = current_ratio / target_ratio
                 = 1.14 / 2.45 = 0.46 (需跌 54%)

此推演提供「極端情境」的量化參考,非預測。 </principle>

<principle name="data_alignment"> **數據對齊原則**
  • 頻率選擇:長週期訊號建議使用週頻(1wk)或月頻(1mo)
  • 平滑視窗:可選 4 週或 3 個月移動平均降低雜訊
  • 事件去重:類比事件間隔需 ≥ min_separation_days(如 180 天)

本 skill 使用 yfinance 取得 ETF/期貨數據,預設週頻對齊。 </principle>

</essential_principles>

<objective> 實作「銀礦股價 / 銀價比率」分析模型:
  1. 數據整合:取得礦業股代理與白銀價格序列
  2. 比率計算:計算相對比率並可選平滑
  3. 分位數判斷:當前比率在歷史的位置
  4. 類比事件:歷史底部區間的事件識別
  5. 前瞻驗證:底部事件後白銀的 1/2/3 年表現
  6. 情境推演:礦業股需漲多少 / 白銀需跌多少才回到頂部

輸出:當前狀態、歷史類比、情境推演、風險提示。 </objective>

<quick_start>

最快的方式:執行預設情境分析

bash
cd skills/analyze-silver-miner-metal-ratio
pip install pandas numpy yfinance matplotlib  # 首次使用
python scripts/ratio_analyzer.py --quick

生成視覺化圖表(基本版)

bash
python scripts/ratio_plotter.py --quick --output-dir ../../output

生成完整版圖表(含底部事件、前瞻報酬統計)

bash
python scripts/ratio_plotter.py --comprehensive --start-date 2010-01-01 --output-dir ../../output

圖表輸出路徑:

  • 基本版:output/sil_silver_ratio_YYYY-MM-DD.png
  • 完整版:output/sil_silver_ratio_comprehensive_YYYY-MM-DD.png

輸出範例:

json
{
  "skill": "analyze_silver_miner_metal_ratio",
  "current": {
    "ratio": 1.14,
    "ratio_percentile": 18.7,
    "zone": "bottom",
    "bottom_threshold": 1.16,
    "top_threshold": 2.45
  },
  "history_analogs": {
    "bottom_event_dates": ["2010-08-06", "2016-01-29", "2020-03-20"],
    "forward_metal_returns": {
      "252": {"count": 3, "median": 0.42, "win_rate": 1.0}
    }
  },
  "scenarios": {
    "target": "return_to_top",
    "miner_multiplier_if_metal_flat": 2.15,
    "metal_drop_pct_if_miner_flat": 0.54
  }
}

完整情境分析

bash
python scripts/ratio_analyzer.py \
  --miner-proxy SIL \
  --metal-proxy SI=F \
  --start-date 2008-01-01 \
  --freq 1wk \
  --smoothing-window 4 \
  --bottom-quantile 0.20 \
  --top-quantile 0.80 \
  --output result.json

</quick_start>

<intake> 需要進行什麼操作?
  1. 快速分析 - 使用預設參數(SIL / SI=F)計算當前比率狀態
  2. 完整分析 - 自訂參數進行情境分析(可選擇礦業股/金屬代理、分位門檻)
  3. 視覺化圖表 - 生成比率走勢圖,標記當前位置與分位數區間
  4. 歷史驗證 - 查看底部區間事件的前瞻報酬統計
  5. 情境推演 - 計算「回到頂部」需要的礦業股漲幅或白銀跌幅
  6. 方法論學習 - 了解比率邏輯與分位數解讀

請選擇或直接提供分析參數。 </intake>

<routing> | Response | Action | |-------------------------------|---------------------------------------------------------------------| | 1, "快速", "quick", "分析" | 執行 `python scripts/ratio_analyzer.py --quick` | | 2, "完整", "full", "自訂" | 閱讀 `workflows/analyze.md` 並執行 | | 3, "圖表", "chart", "視覺化" | 執行 `python scripts/ratio_plotter.py --quick --output-dir output/` | | 4, "歷史", "驗證", "backtest" | 閱讀 `workflows/analyze.md` 並聚焦歷史類比 | | 5, "情境", "scenario", "推演" | 閱讀 `workflows/analyze.md` 並聚焦情境推演 | | 6, "學習", "方法論", "why" | 閱讀 `references/methodology.md` | | 提供參數 (如礦業股/金屬代理) | 閱讀 `workflows/analyze.md` 並使用參數執行 |

路由後,閱讀對應文件並執行。 </routing>

<directory_structure>

code
analyze-silver-miner-metal-ratio/
├── SKILL.md                           # 本文件(路由器)
├── skill.yaml                         # 前端展示元數據
├── manifest.json                      # 技能元數據
├── workflows/
│   ├── analyze.md                     # 完整情境分析工作流
│   └── data-research.md               # 數據源研究與替代方案
├── references/
│   ├── methodology.md                 # 方法論與計算邏輯
│   ├── input-schema.md                # 完整輸入參數定義
│   └── data-sources.md                # 數據來源與獲取方式
├── templates/
│   ├── output-json.md                 # JSON 輸出模板
│   └── output-markdown.md             # Markdown 報告模板
├── scripts/
│   ├── ratio_analyzer.py              # 主計算腳本
│   └── ratio_plotter.py               # 視覺化圖表腳本
└── examples/
    └── sample-output.json             # 範例輸出

</directory_structure>

<reference_index>

方法論: references/methodology.md

  • 比率定義與直覺
  • 分位數解讀邏輯
  • 背離訊號的意義
  • 情境推演數學
  • 歷史驗證方法

資料來源: references/data-sources.md

  • 礦業股代理(ETF/指數)
  • 白銀價格代理
  • 數據對齊原則

輸入參數: references/input-schema.md

  • 完整參數定義
  • 預設值與建議範圍

</reference_index>

<workflows_index>

WorkflowPurpose使用時機
analyze.md完整情境分析需要自訂參數計算比率與情境
data-research.md數據源研究了解如何獲取或替代礦業股/金屬數據
</workflows_index>

<templates_index>

TemplatePurpose
output-json.mdJSON 輸出結構定義
output-markdown.mdMarkdown 報告模板
</templates_index>

<scripts_index>

ScriptCommandPurpose
ratio_analyzer.py--quick快速分析 SIL/SI=F
ratio_analyzer.py--miner-proxy SILJ --freq 1mo自訂礦業股與頻率
ratio_analyzer.py--scenario-target return_to_median回到中位數情境
ratio_plotter.py--quick --output-dir ../../output快速生成基本版圖表
ratio_plotter.py--comprehensive --start-date 2010-01-01 --output-dir ...完整版圖表(含底部事件、前瞻報酬統計)
</scripts_index>

<input_schema_summary>

核心參數

參數類型預設值說明
miner_proxystringSIL銀礦股代表(ETF/指數代號)
metal_proxystringSI=F白銀價格代表(期貨/現貨/ETF)
start_datestring10 年前歷史回溯起點(YYYY-MM-DD)
end_datestringtoday分析終點
freqstring1wk取樣頻率(1d/1wk/1mo)

進階參數

參數類型預設值說明
smoothing_windowint4比率平滑視窗(週數/月數)
bottom_quantilefloat0.20底部估值區分位數門檻
top_quantilefloat0.80頂部估值區分位數門檻
min_separation_daysint180類比事件去重間隔
forward_horizonslist[52, 104, 156]前瞻期(週數,對應 1/2/3 年)
scenario_targetstringreturn_to_top情境目標(return_to_top/median)

完整參數定義見 references/input-schema.md

</input_schema_summary>

<output_schema_summary>

json
{
  "skill": "analyze_silver_miner_metal_ratio",
  "inputs": {
    "miner_proxy": "SIL",
    "metal_proxy": "SI=F",
    "start_date": "2010-01-01",
    "freq": "1wk"
  },
  "current": {
    "ratio": 1.14,
    "ratio_percentile": 18.7,
    "zone": "bottom",
    "bottom_threshold": 1.16,
    "top_threshold": 2.45
  },
  "history_analogs": {
    "bottom_event_dates": ["2010-08-06", "2016-01-29", "2020-03-20"],
    "forward_metal_returns": {
      "252": {"count": 3, "median": 0.42, "mean": 0.39, "win_rate": 1.0, "worst": 0.18},
      "504": {"count": 3, "median": 0.71, "mean": 0.66, "win_rate": 1.0, "worst": 0.31}
    }
  },
  "scenarios": {
    "target": "return_to_top",
    "target_ratio": 2.45,
    "miner_multiplier_if_metal_flat": 2.15,
    "metal_multiplier_if_miner_flat": 0.46,
    "metal_drop_pct_if_miner_flat": 0.54
  },
  "summary": "銀礦股價 / 銀價比率落在歷史低分位,顯示礦業股相對白銀偏便宜...",
  "notes": [
    "比率訊號衡量的是『相對估值』,不是單邊價格保證。",
    "礦業股與金屬可能同漲,但礦業股也可能因成本上升、地緣/政策風險、增發稀釋而落後。",
    "建議搭配:礦業股獲利率(成本曲線)、白銀實質利率/美元、投機部位(COT)、ETF 流量等做交叉驗證。"
  ]
}

完整輸出結構見 templates/output-json.md。 </output_schema_summary>

<success_criteria> 執行成功時應產出:

  • 當前比率與歷史分位數
  • 估值區間判定(bottom/low/neutral/high/top)
  • 歷史底部事件列表與去重
  • 底部事件後的前瞻報酬統計(平均/中位/勝率/最差)
  • 情境推演(礦業股需漲多少 / 白銀需跌多少)
  • 結果輸出為指定格式(JSON 或 Markdown)
  • 視覺化圖表輸出(若需要)
  • 風險提示與後續研究建議 </success_criteria>